Assessment of pharmacokinetics and biological effects of lignin-derived polyphenolic compositions BP-C3 and BP-C2 in in vivo models

Panchenko A.V.1, Fedoros E.I.1,2, Pigarev S.E.1,2, Maydin M.A.1, Gubareva E.A.1, Bykov V.N.1, Drachev I.S.1, Anisimov V.N.1, Chernysheva M.G.3, Badun G.A.3, Perminova I.V.3

1Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia, ando.pan@gmail.com
2Nobel, Ltd., Saint Petersburg, Russia
3Lomonosov Moscow State University, Moscow, Russia

Keywords: lignin, polyphenolic composition, BP-C3, BP-C2, pharmacokinetics, effects

doi: 10.36291/HIT.2019.panchenko.096

BP-Cx-1 is a water-soluble multicomponent composition of polyphenolic compounds derived from lignin-based enterosorbent - Polyhepan® treated in the alkaline medium at the elevated pressure and temperature with continuous supply of oxygen [1]. BP-Cx-1 is used as base for a number of compositions with different activities. BP-C3 is a formulation, which comprises BP-Cx-1 with iron complex, selenium, ascorbic acid and retinol. Long-term treatment with BP-C3 had anticarcinogenic and geroprotective activity in female SHR mice [2]. BP-C3 was found to reduce the toxic effect of 5-fluorouracil against hematopoiesis and intestinal epithelium which was evident by preserved organ/body ratios for the lymphopoietic organs, anemia reduction and intestinal crypt survival [3]. BP-C2 is a composition which comprises BP-Cx-1 with ammonium molybdate, developed as radioprotector/radiomitigator [4]. BP-C2 was tested in two total body gamma-irradiation models (CBA and C57BL/6 mice) and exhibited a radiomitigating effect in the midlethal range of radiation doses. BP-C2 improved animal survival, protected intestinal crypts and Lgr5+ stem cells and enhanced extramedullar hematopoiesis in the spleen. Neither BP-C2 nor BP-C3 administered to intact animals has effects on blood count or biochemistry, body weight or animal behavior. For pharmacokinetics, the labeled [3H]-BP-Cx-1 was administered intravenously or by gavage once to BALB/c mice. In case of i.v. administration the primary organs of accumulation were the lungs, liver, kidneys and spleen (50-5000 μg/g tissue). BP-Cx-1 has low oral absolute bioavailability, its concentration in animal organs is several orders of magnitude lower than when administered i.v. (2-18 μg/g tissue). The present study demonstrated the feasibility of using a lignin derived polyphenolic compositions to diminish the toxic effects of chemotherapy and radiation injury. Both studied compositions provide significant protection effect against intestinal injury caused by chemical (BP-C3) or radiation (BP-C2) exposure. The extensive therapeutic potential of lignin derived polyphenolic compositions is yet to be explored.

This work was supported by Russian Science Foundation (grant #16-15-00142) and by Russian Foundation for Basic Research (grant # 18-33-20147).

References