The influence of fulvic acid on seed germination and plant productivity

Brazienė Z., Paltanavičius V., Avižienytė D.

LRCAF Rumokai Experimental Station, Klausuciai, Lithuania, zita.braziene@lammc.lt

Keywords: fulvic acid, seed germination, sugar beet, spring wheat, yield

doi: 10.36291/HIT.2019.braziene.059

Intensive field cultivation technologies cause a degradation of the soil. One of the ways to increase the activity of the soil and the productivity of plants is to use biological preparations and bioorganic fertilizers [1]. Fulvic acid application increase root activity [3], improve growth of plants and yield quantity and quality, limiting the development of some pathogens [2]. Also, fulvic acids improve soil physicochemical conditions [4].

The vegetation and field experiments were conducted in 2017-2018 at the Rumokai Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry. The preparation Mineral Ful (bioactive fulvic acid complex) was used in our experiments.

Fulvic acid increased spring wheat seed germination 6.1 % (Table 1), height of shoots -2.9 %, air-dry mass of shoots -12.5 %, air-dry mass of roots -22.7 % (Table 2) compared to control. Fulvic acid increased the spring wheat grain yield 14.7 %, the sugar beet roots yield -7.9 % (Table 3).

Table 1. The influence of fulvic acid and chemical stain on wheat seed germination

Treatment	Amount (%) of germinated seeds		Amount (%) of seeds damaged by		
	After 3 days	After 7 days	Fusarium spp.	Monographella nivalis	
Control	79.5	90.3	3.8	2.7	
Fulvic acid	87.0	95.8	1.8	2.0	
Stain	43.0	92.2	1.2	1.0	

Table 2. The influence of fulvic acid and chemical stain on wheat shoots and roots

Treatment	Shoots	Mass of shoots, g		Mass of roots, g	
	height, cm	Fresh	Air-dry	Fresh	Air-dry
Control	20.7	8.3	1.6	8.2	2.2
Fulvic acid	21.3	9.7	1.8	11.6	2.7
Stain	15.7	8.0	1.4	9.1	2.5

Table 3. The influence of fulvic acid on spring wheat and sugar beets yield

Treatment		Spring wheat		Sugar beet		
	Yield,	Amount of crude protein,	Yield,	Sugar content,		
	t ha⁻¹	%	t ha⁻¹	%		
Control	2.281	9.8	89.54	15.06		
Fulvic acid	2.616	10.5	96.58	15.30		

References

1. Jakienė E., Spruogis V. // Žemės ūkio mokslai. 2015. 22(3):107–120 (In Lithuanian).

2. Moradi P. et al. // J. Centr. Europ. Agric. 2017. 18(3): 584-597.

- 3. Schmidt W. et al. // In: Hartmann A., Schmid M., Wenzel W., Hinnsinger P. Rhizosphere Perspectives and Challenges, Elsevier. 2004. 1171–1178.
- 4. Yang et al. Journal of Soil Science and Plant Nutrition. 2013. 13(3):526–533.